Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 29(4): 150, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682196

RESUMO

BACKGROUND: Salt stress is a multicomponent phenomenon; it includes many processes that directly or indirectly affect the plant. Attempts have been made to comprehensively consider the processes of salt stress in plants Triticum aestivum (variety Orenburgskaya 22) and Triticum durum (variety Zolotaya). METHODS: The study used methods of light and fluorescence microscopy, methods of immunofluorodetection, expression of DNA methyltransferase genes, genes of the ion transporter and superoxide dismutase families, as well as biochemical determination of total antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) reagent. RESULTS: According to morphometric indicators, the Orenburgskaya 22 variety showed greater tolerance to the action of 150 mM NaCl than the Zolotaya variety. The level of expression of genes of the HKT ion transporter family in the Orenburgskaya 22 variety is higher than in the Zolotaya variety. It was found that the expression of the DNA methyltransferase gene DRM2.1, which post-translationally methylates cytosine residues, is 22.3 times higher in Zolotaya compared to Orenburg 22 when exposed to salt. The accumulation of toxic ions is accompanied by an increase in reactive oxygen species (ROS) and increased damage to root tissue, especially in the Zolotaya variety. Using fluorescence microscopy using the Carboxy-H2DFF marker in the Orenburgskaya 22 variety at high NaCl concentrations, the highest fluorescence intensity was determined in the cap zone; in the Zolotaya variety-in the zones of the cap and root meristem. Excess ROS is more successfully removed in the Orenburgskaya 22 variety, which has a higher level of antioxidant activity (AOA), as well as the level of expression of the Cu/ZnSOD and MnSOD superoxide dismutase genes. Using programmed cell death (PCD) markers based on the release of cytochrome c from mitochondria into the cytoplasm, DNA breakage and the release of phosphatidylserine from mitochondria, the degree of damage to root cells was assessed in both wheat varieties. It has been proven that wheat cell death occurs through the mitochondrial pathway. It was noted that the salt-sensitive variety Zolotaya had a significant number of necrotic cells. CONCLUSION: Based on the data obtained, it was concluded that the Orenburgskaya 22 variety exhibits greater resistance to salinity than the Zolotaya variety. These data may be of practical importance for enhancing protective mechanisms under abiotic stress.


Assuntos
Tolerância ao Sal , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069196

RESUMO

Various stressors lead to an increase in ROS and damage to plant tissues. Plants have a powerful antioxidant system (AOS), which allows them to neutralize excess ROS. We detected an intense fluorescent glow of ROS in the cells of the cap, meristem, and elongation zones in the roots of wheat Triticum aestivum (Orenburgskaya 22 variety) and Triticum durum (Zolotaya variety). An increase in ROS was accompanied by DNA breaks in the nuclei of wheat root cells, the release of cytochrome c from mitochondria into the cytoplasm, and the translocation of phosphatidylserine into the outer layer of the plasma membrane under salt stress and hypoxia. The different resistances of the two wheat varieties to different abiotic stresses were revealed. The soft wheat variety Orenburgskaya 22 showed high resistance to salt stress but sensitivity to hypoxia, and the durum wheat variety Zolotaya showed tolerance to hypoxia but high sensitivity to salt stress. Different activations of AOS components (GSH, MnSOD, Cu/ZnSOD, CAT, PX, GPX, and GST) were revealed in different wheat genotypes. The basis for the tolerance of the Zolotaya variety to hypoxia is the high content of glutathione (GSH) and the activation of glutathione-dependent enzymes. One of the mechanisms of high resistance to salt stress in the Orenburgskaya 22 variety is a decrease in the level of ROS as a result of the increased activity of the MnSOD and Cu/ZnSOD genes. Identifying the mechanisms of plant tolerance to abiotic stress is the most important task for improving breeding varieties of agricultural plants and increasing their yield.


Assuntos
Antioxidantes , Triticum , Triticum/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Estresse Salino , Estresse Fisiológico/genética , Genótipo , Glutationa/metabolismo , Hipóxia/genética
3.
Plants (Basel) ; 11(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35567102

RESUMO

In order to understand how and what structures of the tomato ovule with a single integument form the seed coat of a mature seed, a detailed study of the main development stages of the tomato ovule integument was carried out using the methods of light and electron microscopy. The integument itself it was shown to transform in the course of development into the coat (skin) of a mature seed, but the outer and inner epidermises of the integument and some layers of the integument parenchyma are mainly involved in this process. The outer epidermis cells are highly modified in later stages; their walls are thickened and lignified, creating a unique relatively hard outer coat. The fate of the inner epidermis of integument is completely different. It is separated from the other parenchyma cells of integument and is transformed into an independent new secretory tissue, an endothelium, which fences off the forming embryo and endosperm from the death zone. Due to the secretory activity of the endothelium, the dying inner parenchyma cells of the integument are lysed. Soon after the cuticle covers the endosperm, the lysis of dead integument cells stops and their flattened remnants form dense layers, which then enter the final composition of the coat of mature tomato seed. The endothelium itself returns to the location of the integument inner epidermis.

4.
Plants (Basel) ; 11(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631778

RESUMO

The overall survival of a plant depends on the development, growth, and functioning of the roots. Root development and growth are not only genetically programmed but are constantly influenced by environmental factors, with the roots adapting to such changes. The peptide AEDL (alanine-glutamine acid-asparagine acid-leucine) at a concentration of 10-7 M had an elongating effect on the root cells of Nicotiana tabacum seedlings. The action of this peptide at such a low concentration is similar to that of peptide phytohormones. In the presence of 150 mM NaCl, a strong distortion in the development and architecture of the tobacco roots was observed. However, the combined presence of AEDL and NaCl resulted in normal root development. In the presence of AEDL, reactive oxygen species (ROS) were detected in the elongation and root hair zones of the roots. The ROS marker fluorescence intensity in plant cells grown with AEDL was much lower than that of plant cells grown without the peptide. Thus, AEDL protected the root tissue from damage by oxidative stress caused by the toxic effects of NaCl. Localization and accumulation of AEDL at the root were tissue-specific. Fluorescence microscopy showed that FITC-AEDL predominantly localized in the zones of elongation and root hairs, with insignificant localization in the meristem zone. AEDL induced a change in the structural organization of chromatin. Structural changes in chromatin caused significant changes in the expression of numerous genes associated with the development and differentiation of the root system. In the roots of tobacco seedlings grown in the presence of AEDL, the expression of WOX family genes decreased, and differentiation of stem cells increased, which led to root elongation. However, in the presence of NaCl, elongation of the tobacco root occurred via a different mechanism involving genes of the expansin family that weaken the cell wall in the elongation zone. Root elongation of plants is of fundamental importance in biology and is especially relevant to crop production as it can affect crop yields.

5.
Plants (Basel) ; 11(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406832

RESUMO

Root hairs absorb soil nutrients and water, and anchor the plant in the soil. Treatment of tobacco (Nicotiana tabacum) roots with glycine (Gly) amino acid, and glycilglycine (GlyGly) and glycilaspartic acid (GlyAsp) dipeptides (10-7 M concentration) significantly increased the development of root hairs. In the root, peptide accumulation was tissue-specific, with predominant localization to the root cap, meristem, elongation zone, and absorption zone. Peptides penetrated the epidermal and cortical cell and showed greater localization to the nucleus than to the cytoplasm. Compared with the control, tobacco plants grown in the presence of Gly, GlyGly, and GlyAsp exhibited the activation of WER, CPC, bHLH54, and bHLH66 genes and suppression of GTL1 and GL2 genes during root hair lengthening. Although Gly, GlyGly, and GlyAsp have a similar structure, the mechanism of regulation of root hair growth in each case were different, and these differences are most likely due to the fact that neutral Gly and GlyGly and negatively charged GlyAsp bind to different motives of functionally important proteins. Short peptides site-specifically interact with DNA, and histones. The molecular mechanisms underlying the effect of exogenous peptides on cellular processes remain unclear. Since these compounds acted at low concentrations, gene expression regulation by short peptides is most likely of epigenetic nature.

6.
Biology (Basel) ; 9(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962161

RESUMO

Various abiotic stresses cause the appearance of reactive oxygen species (ROS) in plant cells, which seriously damage the cellular structures. The engineering of transgenic plants with higher production of ROS-scavenging enzyme in plant cells could protect the integrity of such a fine intracellular structure as the cytoskeleton and each cellular compartment. We analyzed the morphological changes in root tip cells caused by the application of iso-osmotic NaCl and Na2SO4 solutions to tomato plants harboring an introduced superoxide dismutase gene. To study the roots of tomato plants cultivar Belyi Naliv (WT) and FeSOD-transgenic line, we examined the distribution of ROS and enzyme-linked immunosorbent detection of α-tubulin. In addition, longitudinal sections of the root apexes were compared. Transmission electronic microscopy of atypical cytoskeleton structures was also performed. The differences in the microtubules cortical network between WT and transgenic plants without salt stress were detected. The differences were found in the cortical network of microtubules between WT and transgenic plants in the absence of salt stress. While an ordered microtubule network was revealed in the root cells of WT tomato, no such degree of ordering was detected in transgenic line cells. The signs of microtubule disorganization in root cells of WT plants were manifested under the NaCl treatment. On the contrary, the cytoskeleton structural organization in the transgenic line cells was more ordered. Similar changes, including the cortical microtubules disorganization, possibly associated with the formation of atypical tubulin polymers as a response to salt stress caused by Na2SO4 treatment, were also observed. Changes in cell size, due to both vacuolization and impaired cell expansion in columella zone and cap initials, were responsible for the root tip tissue modification.

7.
Biology (Basel) ; 9(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079211

RESUMO

The study was devoted to morphological and cytoembryological analysis of disorders in the anther and pollen development of transgenic tomato plants with a normal and abnormal phenotype, which is characterized by the impaired development of generative organs. Various abnormalities in the structural organization of anthers and microspores were revealed. Such abnormalities in microspores lead to the blocking of asymmetric cell division and, accordingly, the male gametophyte formation. Some of the non-degenerated microspores accumulate a large number of storage inclusions, forming sterile mononuclear pseudo-pollen, which is similar in size and appearance to fertile pollen grain (looks like pollen grain). It was discussed that the growth of tapetal cells in abnormal anthers by increasing the size and ploidy level of nuclei contributes to this process. It has been shown that in transgenic plants with a normal phenotype, individual disturbances are also observed in the development of both male and female gametophytes. The reason for the developmental arrest of some ovules was the death of endosperm at different stages of the globular embryo. At the same time, noticeable hypertrophy of endothelial cells performing a secretory function was observed. In the ovules of transgenic plants with abnormalities, the endothelium forms a pseudo-embryo instead of the embryo sac, stimulating the development of parthenocarpic fruits. The data obtained in this study can be useful for a better understanding of the genetic and molecular mechanisms of cytoplasmic male sterility and parthenocarpic fruit development in tomatoes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA